nisfarm.ru

Dvojitý integrál. Úkoly. Vlastnosti

Problémy, které vedou k pojmu "dvojitý integrál".

  1. Předpokládejme, že planární materiálová deska je dána v rovině, v každém místě, kde je známá hustota. Musíme najít hmotnost této desky. Jelikož tato deska má jasné rozměry, může být uzavřena v obdélníku. Hustota desky může být také chápána takto: V těch bodech obdélníku, které nepatří k desce, předpokládáme, že hustota je nula. Definujeme jednotné dělení na stejný počet částic. Takto daný tvar bude rozdělen na elementární obdélníky. Zvažte jeden z těchto obdélníků. Vybíráme libovolný bod tohoto obdélníku. Vzhledem k malé velikosti takového obdélníku předpokládáme, že hustota v každém bodě daného obdélníku je konstantní. Pak bude hmotnost takové obdélníkové částice definována jako násobení hustoty v tomto bodě oblastí obdélníku. Oblast, jak víte, je násobení délky obdélníku šířkou. A na rovině souřadnic - tato změna s určitým krokem. Pak bude hmotnost celé desky součtem hmotností takových obdélníků. Pokud se dostaneme k hranici v takovém vztahu, pak můžeme získat přesný vztah.
  2. Definujeme prostorové tělo, které je ohraničeno původem a nějakou funkcí. Je nutné najít objem daného tělesa. Stejně jako v předchozím případě rozdělíme oblast na obdélníky. Předpokládáme, že v bodech, které nepatří do domény, bude funkce 0. Zvažte jednu z obdélníkových oddílů. Přes boky tohoto obdélníku kreslíme roviny kolmé na osy úsečky a osy souřadnic. Získáme rovnoběžnost, která je ohraničena zespodu rovinou vzhledem k ose nanášeče a zhora funkce, která byla specifikována ve stavu problému. Vybíráme bod ve středu obdélníku. Vzhledem k malé velikosti tohoto obdélníku můžeme předpokládat, že funkce v tomto obdélníku má konstantní hodnotu a pak můžete vypočítat objem obdélníku. A objem čísla se bude rovnat součtem všech objemů takových obdélníků. Chcete-li získat přesnou hodnotu, musíte jít na hranici.

Jak je zřejmé z uvedených problémů, v každém příkladu dochází k závěru, že různé problémy vedou k úvahám o dvojích částkách stejného typu.




Vlastnosti dvojitého integrálu.

Pojďme problém. Předpokládejme, že v určitém uzavřeném regionu je dána funkce dvou proměnných a daná funkce je nepřetržitá. Vzhledem k tomu, že oblast je omezená, můžete ji umístit do libovolného obdélníku, který zcela obsahuje vlastnosti bodu daného prostoru. Rozdělíme obdélník na stejné části. Říkáme průměr průměru největší diagonály z výsledných obdélníků. Nyní zvolíme bod v hranicích jednoho takového obdélníku. Pokud zjistíte, je hodnota v tomto bodě je stanovit částku, pak se tato částka se bude jmenovat integrál funkce v dané doméně. Hranice takového integrálního součtu, za podmínek, že průměr přestávky být 0, a počet obdélníků - nekonečno. Pokud takový hranice existuje, a nezávisí na způsobu rozbití oblast do obdélníků a výběr podmínek, pak se nazývá - dvojitý integrál.

Geometrický obsah dvojitého integrálu: dvojitý integrál je číselně roven objemu těla, který byl popsán v problému 2.

Pokud znáte dvojitý integrál (definice), můžete nastavit následující vlastnosti:

  1. Konstanta může být odebrána mimo integrální znak.
  2. Integrál součtu (rozdíl) se rovná součtu (rozdílu) integrálů.
  3. Z funkcí je menší, které má menší dvojitý integrál.
  4. Modul lze zavést pod značkou dvojitého integrálu.
Sdílet na sociálních sítích:

Podobné
© 2021 nisfarm.ru