nisfarm.ru

Normální distribuční zákon nebo Gaussova distribuce

Ze všech zákonů v teorii pravděpodobnosti se nejčastěji vyskytuje normální zákon o distribuci, a to častěji než zákon o distribuci. Snad tento fenomén má hlubokou fundamentální povahu. Koneckonců, tento typ distribuce je také pozorován, když několik faktorů se podílí na reprezentaci rozsahu náhodných proměnných, z nichž každá ovlivňuje vlastním způsobem. Normální (nebo Gaussova) distribuce je v tomto případě dosažena díky přidání různých rozdělení. Je to způsobeno širokým rozdělením normálního distribučního práva a dostalo se jeho jména.

normální distribuční právo




Kdykoli mluvíme o nějakém druhu průměrná velikost, zda je měsíční srážková míra, příjem na obyvatele nebo výkonnost stupně, při výpočtu jeho hodnoty se zpravidla používá běžný zákon o distribuci. To je střední hodnota je volána matematické očekávání a na grafu odpovídá maximálnímu (obvykle označenému jako M). Je-li distribuce správná, je křivka symetrická vzhledem k maximu, ale ve skutečnosti to není vždy případ, a to je přípustné.

normální distribuční zákon náhodné proměnné

Abychom popsali normální distribuční zákon náhodné veličiny, je také nutné znát směrodatnou odchylku (označenou jako sigma-sigma). Určuje tvar křivky na grafu. Více sigma-, tím bude povrchnější křivka. Na druhé straně, menší sigma-, je přesněji určena průměrná hodnota hodnoty ve vzorku. Proto pro velké RMS odchylky říci, že průměrná hodnota je v určitém rozsahu čísel, a neodpovídá libovolný počet.

Stejně jako ostatní zákony o statistice, normální zákon distribuce pravděpodobnosti se ukazuje lepší, tím větší je vzorek, tj. počet objektů, které se účastní měření. Objevuje se ovšem i další účinek: s velkým vzorkem je velmi nepravděpodobné, že by splňoval určitou hodnotu hodnoty, včetně průměru. Hodnoty jsou seskupeny pouze uprostřed. Proto je správnější říci, že náhodná proměnná bude blízká určité hodnotě s takovým podílem pravděpodobnosti.

normální zákon o distribuci pravděpodobnosti

Zjistěte, jak vysoká je pravděpodobnost a pomáhá odchylka root-mean-square. V intervalu "tři sigma", tj. M +/- 3 * sigma-, 97,3% všech hodnot se vejde do vzorku a v intervalu "pět sigma" - asi 99%. Tyto intervaly se obvykle používají k určení, pokud je to nutné, maximální a minimální hodnoty hodnot ve vzorku. Pravděpodobnost, že hodnota hodnoty opustí interval pěti sigma, je zanedbatelná. V praxi obvykle používají interval tří sigma.

Normální distribuční zákon může být vícerozměrný. Předpokládá se, že objekt má několik nezávislých parametrů vyjádřených v jedné měrné jednotce. Například odchylka kuličky od středu cíle vertikálně a horizontálně během vypalování bude popsána dvourozměrným normálním rozdělením. Graf takového rozdělení v ideálním případě je podobný číslu rotace ploché křivky (gaussian), která byla zmíněna výše.

Sdílet na sociálních sítích:

Podobné
© 2021 nisfarm.ru